Source code for flatland.integrations.interactiveai.context_api.models.context_in

# coding: utf-8

"""
    APIFlask

    No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator)

    The version of the OpenAPI document: 0.1.0
    Generated by OpenAPI Generator (https://openapi-generator.tech)

    Do not edit the class manually.
"""  # noqa: E501

from __future__ import annotations

import json
import pprint
import re  # noqa: F401
from datetime import datetime
from typing import Any, ClassVar, Dict, List
from typing import Optional, Set

from pydantic import BaseModel, ConfigDict, Field, StrictStr, field_validator
from typing_extensions import Self

from flatland.integrations.interactiveai.context_api.models.metadata_schema_railway import MetadataSchemaRailway


[docs] class ContextIn(BaseModel): """ ContextIn """ # noqa: E501 data: Optional[MetadataSchemaRailway] = None var_date: Optional[datetime] = Field(default=None, alias="date") use_case: StrictStr __properties: ClassVar[List[str]] = ["data", "date", "use_case"]
[docs] @field_validator('use_case') def use_case_validate_enum(cls, value): """Validates the enum""" if value not in set(['PowerGrid', 'Railway', 'ATM']): raise ValueError("must be one of enum values ('PowerGrid', 'Railway', 'ATM')") return value
model_config = ConfigDict( populate_by_name=True, validate_assignment=True, protected_namespaces=(), )
[docs] def to_str(self) -> str: """Returns the string representation of the model using alias""" return pprint.pformat(self.model_dump(by_alias=True))
[docs] def to_json(self) -> str: """Returns the JSON representation of the model using alias""" # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead return json.dumps(self.to_dict())
[docs] @classmethod def from_json(cls, json_str: str) -> Optional[Self]: """Create an instance of ContextIn from a JSON string""" return cls.from_dict(json.loads(json_str))
[docs] def to_dict(self) -> Dict[str, Any]: """Return the dictionary representation of the model using alias. This has the following differences from calling pydantic's `self.model_dump(by_alias=True)`: * `None` is only added to the output dict for nullable fields that were set at model initialization. Other fields with value `None` are ignored. """ excluded_fields: Set[str] = set([ ]) _dict = self.model_dump( by_alias=True, exclude=excluded_fields, exclude_none=True, ) # override the default output from pydantic by calling `to_dict()` of data if self.data: _dict['data'] = self.data.to_dict() return _dict
[docs] @classmethod def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: """Create an instance of ContextIn from a dict""" if obj is None: return None if not isinstance(obj, dict): return cls.model_validate(obj) _obj = cls.model_validate({ "data": MetadataSchemaRailway.from_dict(obj["data"]) if obj.get("data") is not None else None, "date": obj.get("date"), "use_case": obj.get("use_case") }) return _obj