flatland.trajectories.trajectories module#
- class flatland.trajectories.trajectories.Trajectory(data_dir: Path, ep_id: str = NOTHING, trains_positions: DataFrame | None = None, actions: DataFrame | None = None, trains_arrived: DataFrame | None = None, trains_rewards_dones_infos: DataFrame | None = None)[source]#
Bases:
objectEncapsulates episode data (actions, positions etc.) for one or multiple episodes for further analysis/evaluation.
Aka. Episode Aka. Recording
In contrast to rllib (ray-project/ray), we use a tabular approach (tsv-backed) instead of `dict`s.
Directory structure: - event_logs
ActionEvents.discrete_action – holds set of action to be replayed for the related episodes. TrainMovementEvents.trains_arrived – holds success rate for the related episodes. TrainMovementEvents.trains_positions – holds the positions for the related episodes. TrainMovementEvents.trains_rewards_dones_infos – holds the rewards for the related episodes.
- serialised_state
<ep_id>.pkl – Holds the pickled environment version for the episode.
- Indexing:
actions for step i are index i-1 (i.e. starting at 0)
positions before step i are indexed i-1 (i.e. starting at 0)
positions after step are indexed i (i.e. starting at 1)
- action_collect(env_time: int, agent_id: int, action: RailEnvActions)[source]#
- action_lookup(env_time: int, agent_id: int) RailEnvActions[source]#
Method used to retrieve the stored action (if available). Defaults to 2 = MOVE_FORWARD.
Parameters#
- env_time: int
action going into step env_time
- agent_id: int
agent ID
Returns#
- RailEnvActions
The action to step the env.
- compare_actions(other: Trajectory, start_step: int | None = None, end_step: int | None = None, ignoring_waiting=False) DataFrame[source]#
- compare_arrived(other: Trajectory, start_step: int | None = None, end_step: int | None = None, skip_normalized_reward: bool = True) DataFrame[source]#
- compare_positions(other: Trajectory, start_step: int | None = None, end_step: int | None = None) DataFrame[source]#
- compare_rewards_dones_infos(other: Trajectory, start_step: int | None = None, end_step: int | None = None, ignoring_rewards: bool = False) DataFrame[source]#
- static create_empty(data_dir: Path, ep_id: str | None = None) Trajectory[source]#
Create a new empty trajectory.
Parameters#
- data_dirPath
the data dir backing the trajectory. Must be empty.
- ep_id
the episode ID for the new trajectory. If not provided, a new UUID is generated.
Returns#
Trajectory
- fork(data_dir: Path, start_step: int, ep_id: str | None = None) Trajectory[source]#
Fork a trajectory to a new location and a new episode ID.
Parameters#
- data_dirPath
the data dir backing the forked trajectory.
- ep_idstr
the new episode ID for the fork. If not provided, a new UUID is generated.
- start_stepint
where to start the fork
Returns#
Trajectory
- load_env(start_step: int | None = None, inexact: bool = False, rewards: Rewards | None = None) RailEnv | None[source]#
Restore an episode’s env.
Parameters#
- start_stepOptional[int]
start from snapshot (if it exists)
- inexactbool
allows returning the last snapshot before start_step
- rewardsRewards
rewards for the loaded env. If not provided, defaults to the loaded env’s rewards.
Returns#
- RailEnv
the rail env or None if the snapshot at the step does not exist
- static load_existing(data_dir: Path, ep_id: str) Trajectory[source]#
Load existing trajectory from disk.
Parameters#
- data_dirPath
the data dir backing the trajectory.
- ep_id
the ep_id - the data dir may contain multiple trajectories in the same data frames.
Returns#
Trajectory
- property outputs_dir: Path#
- position_lookup(env_time: int, agent_id: int) Tuple[Tuple[int, int], int][source]#
Method used to retrieve the stored position (if available).
Parameters#
- env_time: int
position before (!) step env_time
- agent_id: int
agent ID
Returns#
- Tuple[Tuple[int, int], int]
The position in the format ((row, column), direction).
- rewards_dones_infos_collect(env_time: int, agent_id: int, reward: float, info: Any, done: bool)[source]#