Source code for flatland.evaluators.trajectory_evaluator
from pathlib import Path
import click
import numpy as np
import tqdm
from flatland.callbacks.callbacks import FlatlandCallbacks, make_multi_callbacks
from flatland.trajectories.trajectories import Trajectory
[docs]
class TrajectoryEvaluator:
def __init__(self, trajectory: Trajectory, callbacks: FlatlandCallbacks = None):
self.trajectory = trajectory
self.callbacks = callbacks
def __call__(self, *args, **kwargs):
self.evaluate()
[docs]
def evaluate(self, start_step: int = None, end_step: int = None, snapshot_interval=0, tqdm_kwargs: dict = None):
"""
The data is structured as follows:
-30x30 map
Contains the data to replay the episodes.
- <n>_trains -- for n in 10,15,20,50
- event_logs
ActionEvents.discrete_action -- holds set of action to be replayed for the related episodes.
TrainMovementEvents.trains_arrived -- holds success rate for the related episodes.
TrainMovementEvents.trains_positions -- holds the positions for the related episodes.
- serialised_state
<ep_id>.pkl -- Holds the pickled environment version for the episode.
All these episodes are with constant speed of 1 and malfunctions free.
Parameters
----------
start_step : int
start evaluation from intermediate step incl. (requires snapshot to be present)
end_step : int
stop evaluation at intermediate step excl.
rendering : bool
render while evaluating
snapshot_interval : int
interval to write pkl snapshots to outputs/serialised_state subdirectory (not serialised_state subdirectory directly). 1 means at every step. 0 means never.
tqdm_args: dict
additional kwargs for tqdm
"""
trains_positions = self.trajectory.read_trains_positions()
actions = self.trajectory.read_actions()
trains_arrived = self.trajectory.read_trains_arrived()
if tqdm_kwargs is None:
tqdm_kwargs = {}
env = self.trajectory.restore_episode(start_step)
self.trajectory.outputs_dir.mkdir(exist_ok=True)
if snapshot_interval > 0:
from flatland.trajectories.trajectory_snapshot_callbacks import TrajectorySnapshotCallbacks
if self.callbacks is None:
self.callbacks = TrajectorySnapshotCallbacks(self.trajectory, snapshot_interval=snapshot_interval)
else:
self.callbacks = make_multi_callbacks(self.callbacks, TrajectorySnapshotCallbacks(self.trajectory, snapshot_interval=snapshot_interval))
if self.callbacks is not None:
self.callbacks.on_episode_start(env=env, data_dir=self.trajectory.outputs_dir)
env.record_steps = True
n_agents = env.get_num_agents()
assert len(env.agents) == n_agents
if start_step is None:
start_step = 0
if end_step is None:
end_step = env._max_episode_steps
for elapsed_before_step in tqdm.tqdm(range(start_step, end_step), **tqdm_kwargs):
action = {agent_id: self.trajectory.action_lookup(actions, env_time=elapsed_before_step, agent_id=agent_id) for agent_id in range(n_agents)}
_, _, dones, _ = env.step(action)
if self.callbacks is not None:
self.callbacks.on_episode_step(env=env, data_dir=self.trajectory.outputs_dir)
elapsed_after_step = elapsed_before_step + 1
done = dones['__all__']
for agent_id in range(n_agents):
agent = env.agents[agent_id]
expected_position = self.trajectory.position_lookup(trains_positions, env_time=elapsed_after_step, agent_id=agent_id)
actual_position = (agent.position, agent.direction)
assert actual_position == expected_position, f"\n====================================================\n\n\n\n\n" \
f"- actual_position:\t{actual_position}\n" \
f"- expected_position:\t{expected_position}\n" \
f"- trajectory:\tTrajectory({self.trajectory.data_dir}, {self.trajectory.ep_id})\n" \
f"- agent:\t{agent} \n- state_machine:\t{agent.state_machine}\n" \
f"- speed_counter:\t{agent.speed_counter}\n" \
f"- breakpoint:\tself._elapsed_steps == {elapsed_after_step} and agent.handle == {agent.handle}\n" \
f"- motion check:\t{list(env.motionCheck.G.edges)}\n\n\n" \
f"- agents:\t{env.agents}"
if done:
break
if self.callbacks is not None:
self.callbacks.on_episode_end(env=env, data_dir=self.trajectory.outputs_dir)
trains_arrived_episode = self.trajectory.trains_arrived_lookup(trains_arrived)
expected_success_rate = trains_arrived_episode['success_rate']
actual_success_rate = sum([agent.state == 6 for agent in env.agents]) / n_agents
print(f"{actual_success_rate * 100}% trains arrived. Expected {expected_success_rate * 100}%. {env._elapsed_steps - 1} elapsed steps.")
if start_step is None and end_step is None:
assert np.isclose(expected_success_rate, actual_success_rate)
@click.command()
@click.option('--data-dir',
type=click.Path(exists=True),
help="Path to folder containing Flatland episode",
required=True
)
@click.option('--ep-id',
type=str,
help="Episode ID.",
required=True
)
def evaluate_trajectory(data_dir: Path, ep_id: str):
TrajectoryEvaluator(Trajectory(data_dir=data_dir, ep_id=ep_id)).evaluate()