Source code for flatland.evaluators.trajectory_evaluator

import os
from pathlib import Path

import click
import numpy as np
import tqdm

from flatland.callbacks.callbacks import FlatlandCallbacks, make_multi_callbacks
from flatland.envs.rail_env import RailEnv
from flatland.envs.rail_env_action import RailEnvActions
from flatland.envs.rewards import Rewards
from flatland.trajectories.trajectories import Trajectory
from flatland.utils.cli_utils import resolve_type


[docs] class TrajectoryEvaluator: def __init__(self, trajectory: Trajectory, callbacks: FlatlandCallbacks = None): self.trajectory = trajectory self.callbacks = callbacks
[docs] def evaluate( self, start_step: int = None, end_step: int = None, snapshot_interval=0, tqdm_kwargs: dict = None, skip_rewards_dones_infos: bool = False, skip_rewards: bool = False, rewards: Rewards = None ) -> RailEnv: """ Parameters ---------- start_step : int start evaluation from intermediate step incl. (requires snapshot to be present). If not provided, defaults to 0. end_step : int stop evaluation at intermediate step excl. If not provided, defaults to env's max_episode_steps. snapshot_interval : int interval to write pkl snapshots to outputs/serialised_state subdirectory (not serialised_state subdirectory directly). 1 means at every step. 0 means never. tqdm_kwargs: dict additional kwargs for tqdm skip_rewards_dones_infos : bool skip verification of rewards/dones/infos rewards : Rewards Rewards used for evaluation. If not provided, defaults to the restored env's rewards. """ if tqdm_kwargs is None: tqdm_kwargs = {} env = self.trajectory.load_env(start_step=start_step, rewards=rewards) if start_step is None: start_step = 0 if end_step is None: end_step = env._max_episode_steps assert end_step >= start_step if snapshot_interval > 0: from flatland.trajectories.trajectory_snapshot_callbacks import TrajectorySnapshotCallbacks if self.callbacks is None: self.callbacks = TrajectorySnapshotCallbacks(self.trajectory, snapshot_interval=snapshot_interval) else: self.callbacks = make_multi_callbacks(self.callbacks, TrajectorySnapshotCallbacks(self.trajectory, snapshot_interval=snapshot_interval)) if self.callbacks is not None: self.callbacks.on_episode_start(env=env, data_dir=self.trajectory.outputs_dir) n_agents = env.get_num_agents() assert len(env.agents) == n_agents action_cache, position_cache, trains_rewards_dones_infos_cache = self.trajectory.build_cache() done = False for elapsed_before_step in tqdm.tqdm(range(start_step, end_step), **tqdm_kwargs): action = {agent_id: action_cache[elapsed_before_step].get(agent_id, RailEnvActions.MOVE_FORWARD) for agent_id in range(n_agents)} assert env._elapsed_steps == elapsed_before_step _, rewards, dones, infos = env.step(action) if self.callbacks is not None: self.callbacks.on_episode_step(env=env, data_dir=self.trajectory.outputs_dir) elapsed_after_step = elapsed_before_step + 1 done = dones['__all__'] for agent_id in range(n_agents): agent = env.agents[agent_id] expected_position = position_cache[elapsed_after_step][agent_id] actual_position = (agent.position, agent.direction) assert actual_position == expected_position, f"\n====================================================\n\n\n\n\n" \ f"- actual_position:\t{actual_position}\n" \ f"- expected_position:\t{expected_position}\n" \ f"- trajectory:\tTrajectory({self.trajectory.data_dir}, {self.trajectory.ep_id})\n" \ f"- agent:\t{agent} \n- state_machine:\t{agent.state_machine}\n" \ f"- speed_counter:\t{agent.speed_counter}\n" \ f"- breakpoint:\tself._elapsed_steps == {elapsed_after_step} and agent.handle == {agent.handle}\n" \ f"- motion check:\t{list(env.motion_check.stopped)}\n\n\n" \ f"- agents:\t{env.agents}" if not skip_rewards_dones_infos: actual_reward = rewards[agent_id] actual_done = dones[agent_id] actual_info = {k: v[agent_id] for k, v in infos.items()} expected_reward, expected_done, expected_info = trains_rewards_dones_infos_cache[elapsed_after_step][agent_id] if not skip_rewards: assert np.allclose(actual_reward, expected_reward), (elapsed_after_step, agent_id, actual_reward, expected_reward) assert actual_done == expected_done, (elapsed_after_step, agent_id, actual_done, expected_done) assert actual_info == expected_info, (elapsed_after_step, agent_id, actual_info, expected_info) if done: break if self.callbacks is not None: self.callbacks.on_episode_end(env=env, data_dir=self.trajectory.outputs_dir) if start_step == 0 and done: trains_arrived_episode = self.trajectory.trains_arrived_lookup() expected_success_rate = trains_arrived_episode['success_rate'] actual_success_rate = sum([agent.state == 6 for agent in env.agents]) / n_agents print(f"{actual_success_rate * 100}% trains arrived. Expected {expected_success_rate * 100}%. {env._elapsed_steps - 1} elapsed steps.") assert np.isclose(expected_success_rate, actual_success_rate) return env
@click.command() @click.option('--data-dir', type=click.Path(exists=True, path_type=Path), help="Path to folder containing Flatland episode", required=True ) @click.option('--ep-id', type=str, help="Episode ID.", required=True ) @click.option('--callbacks', type=str, help="Defaults to `None`. Can also be provided through env var CALLBACKS (command-line option takes priority).", required=False, default=None ) @click.option('--callbacks-pkg', type=str, help="DEPRECATED: use --callbacks instead. Defaults to `None`. Can also be provided through env var CALLBACKS_OKG (command-line option takes priority).", required=False, default=None ) @click.option('--callbacks-cls', type=str, help="DEPRECATED: use --callbacks instead. Defaults to `None`. Can also be provided through env var CALLBACKS_CLS (command-line option takes priority).", required=False, default=None, ) @click.option('--skip-rewards-dones-infos', type=bool, default=False, help="Skip verification of rewards/dones/infos.", required=False ) def evaluate_trajectory( data_dir: Path, ep_id: str, callbacks: str = None, callbacks_pkg: str = None, callbacks_cls: str = None, skip_rewards_dones_infos: bool = False ): if callbacks is None: callbacks = os.environ.get("CALLBACKS", None) if callbacks_pkg is None: callbacks_pkg = os.environ.get("CALLBACKS_PKG", None) if callbacks_cls is None: callbacks_cls = os.environ.get("CALLBACKS_CLS", None) callbacks = resolve_type(callbacks, callbacks_pkg, callbacks_cls) if callbacks is not None: callbacks = callbacks() trajectory = Trajectory.load_existing(data_dir=data_dir, ep_id=ep_id) TrajectoryEvaluator(trajectory, callbacks=callbacks).evaluate(skip_rewards_dones_infos=skip_rewards_dones_infos)