Source code for flatland.envs.rewards

from collections import defaultdict

from flatland.envs.agent_utils import EnvAgent
from flatland.envs.distance_map import DistanceMap
from flatland.envs.step_utils.env_utils import AgentTransitionData
from flatland.envs.step_utils.states import TrainState


[docs] class Rewards: """ Reward Function. This scoring function is designed to capture key operational metrics such as punctuality, efficiency in responding to disruptions, and safety. Punctuality and schedule adherence are rewarded based on the difference between actual and target arrival and departure times at each stop respectively, as well as penalties for intermediate stops not served or even journeys not started. Safety measures are implemented as penalties for collisions which are directly proportional to the train’s speed at impact, ensuring that high-speed operations are managed with extra caution. """ def __init__(self, epsilon: float = 0.01, cancellation_factor: float = 1, cancellation_time_buffer: float = 0, intermediate_not_served_penalty: float = 1, intermediate_late_arrival_penalty_factor: float = 0.2, intermediate_early_departure_penalty_factor: float = 0.5, crash_penalty_factor: float = 0.0 ): """ Parameters ---------- epsilon : float avoid rounding errors, defaults to 0.01. cancellation_factor : float Cancellation factor $\phi \geq 0$. defaults to 1. cancellation_time_buffer : float Cancellation time buffer $\pi \geq 0$. Defaults to 0. intermediate_not_served_penalty : float Intermediate stop not served penalty $\mu \geq 0$. Defaults to 1. intermediate_late_arrival_penalty_factor : float Intermediate late arrival penalty factor $\alpha \geq 0$. Defaults to 0.2. intermediate_early_departure_penalty_factor : float Intermediate early departure penalty factor $\delta \geq 0$. Defaults to 0.5. crash_penalty_factor : float Crash penalty factor $\kappa \geq 0$. Defaults to 0.0. """ self.crash_penalty_factor = crash_penalty_factor self.intermediate_early_departure_penalty_factor = intermediate_early_departure_penalty_factor self.intermediate_late_arrival_penalty_factor = intermediate_late_arrival_penalty_factor self.intermediate_not_served_penalty = intermediate_not_served_penalty self.cancellation_time_buffer = cancellation_time_buffer self.cancellation_factor = cancellation_factor assert self.crash_penalty_factor >= 0 assert self.intermediate_early_departure_penalty_factor >= 0 assert self.intermediate_late_arrival_penalty_factor >= 0 assert self.intermediate_not_served_penalty >= 0 assert self.cancellation_time_buffer >= 0 assert self.cancellation_factor >= 0 # https://stackoverflow.com/questions/16439301/cant-pickle-defaultdict self.arrivals = defaultdict(defaultdict) self.departures = defaultdict(defaultdict)
[docs] def step_reward(self, agent: EnvAgent, agent_transition_data: AgentTransitionData, distance_map: DistanceMap, elapsed_steps: int): """ Handles end-of-step-reward for a particular agent. Parameters ---------- agent: EnvAgent agent_transition_data: AgentTransitionData distance_map: DistanceMap elapsed_steps: int """ reward = 0 if agent.position not in self.arrivals[agent.handle]: self.arrivals[agent.handle][agent.position] = elapsed_steps self.departures[agent.handle][agent.old_position] = elapsed_steps if agent.state_machine.previous_state == TrainState.MOVING and agent.state == TrainState.STOPPED and not agent_transition_data.state_transition_signal.stop_action_given: reward += -1 * agent_transition_data.speed * self.crash_penalty_factor return reward
[docs] def end_of_episode_reward(self, agent: EnvAgent, distance_map: DistanceMap, elapsed_steps: int) -> int: """ Handles end-of-episode reward for a particular agent. Parameters ---------- agent: EnvAgent distance_map: DistanceMap elapsed_steps: int """ reward = None if agent.state == TrainState.DONE: # delay at target # if agent arrived earlier or on time = 0 # if agent arrived later = -ve reward based on how late reward = min(agent.latest_arrival - agent.arrival_time, 0) else: if agent.state.is_off_map_state(): # journey not started reward = -1 * self.cancellation_factor * \ (agent.get_travel_time_on_shortest_path(distance_map) + self.cancellation_time_buffer) # target not reached if agent.state.is_on_map_state(): reward = agent.get_current_delay(elapsed_steps, distance_map) for et, la, ed in zip(agent.waypoints[1:-1], agent.waypoints_latest_arrival[1:-1], agent.waypoints_earliest_departure[1:-1]): if et not in self.arrivals[agent.handle]: # stop not served reward += -1 * self.intermediate_not_served_penalty else: # late arrival reward += self.intermediate_late_arrival_penalty_factor * min(la - self.arrivals[agent.handle][et], 0) # early departure # N.B. if arrival but not departure, handled by above by departed but never reached. if et in self.departures[agent.handle]: reward += self.intermediate_early_departure_penalty_factor * min(self.departures[agent.handle][et] - ed, 0) return reward