Source code for flatland.envs.rail_env_utils

from typing import Dict, Optional

from flatland.core.env_observation_builder import ObservationBuilder
from flatland.envs.line_generators import line_from_file, sparse_line_generator
from flatland.envs.malfunction_generators import ParamMalfunctionGen, MalfunctionParameters
from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnv
from flatland.envs.rail_generators import rail_from_file, sparse_rail_generator


[docs] def load_flatland_environment_from_file(file_name: str, load_from_package: str = None, obs_builder_object: ObservationBuilder = None, record_steps=False, ) -> RailEnv: """ Parameters ---------- file_name : str The pickle file. load_from_package : str The python module to import from. Example: 'env_data.tests' This requires that there are `__init__.py` files in the folder structure we load the file from. obs_builder_object: ObservationBuilder The obs builder for the `RailEnv` that is created. Returns ------- RailEnv The environment loaded from the pickle file. """ if obs_builder_object is None: obs_builder_object = TreeObsForRailEnv( max_depth=2, predictor=ShortestPathPredictorForRailEnv(max_depth=10)) environment = RailEnv(width=1, height=1, rail_generator=rail_from_file(file_name, load_from_package), line_generator=line_from_file(file_name, load_from_package), number_of_agents=1, obs_builder_object=obs_builder_object, record_steps=record_steps, ) return environment
[docs] def env_generator(n_agents: int = 7, x_dim: int = 30, y_dim: int = 30, n_cities: int = 2, max_rail_pairs_in_city: int = 4, grid_mode: bool = False, max_rails_between_cities: int = 2, malfunction_duration_min: int = 20, malfunction_duration_max: int = 50, malfunction_interval: int = 540, speed_ratios: Dict[float, float] = None, seed: int = 42, obs_builder_object: Optional[ObservationBuilder] = None) -> RailEnv: """ Create an env with a given spec using `sparse_rail_generator`. Defaults are taken from Flatland 3 Round 2 Test_0, see `Environment Configurations <https://flatland.aicrowd.com/challenges/flatland3/envconfig.html`_. Parameters name come from `metadata.csv <https://flatland.aicrowd.com/challenges/flatland3/test-submissions-local.html>`_ in `debug-environments.zip <https://www.aicrowd.com/challenges/flatland-3/dataset_files>`_ Parameters ---------- n_agents: int number of agents x_dim: int number of columns y_dim: int number of rows n_cities: int Max number of cities to build. The generator tries to achieve this numbers given all the parameters. Goes into `sparse_rail_generator`. max_rail_pairs_in_city: int Number of parallel tracks in the city. This represents the number of tracks in the train stations. Goes into `sparse_rail_generator`. grid_mode: bool How to distribute the cities in the path, either equally in a grid or random. Goes into `sparse_rail_generator`. max_rails_between_cities: int Max number of rails connecting to a city. This is only the number of connection points at city boarder. malfunction_duration_min: int Minimal duration of malfunction. Goes into `ParamMalfunctionGen`. malfunction_duration_max: int Max duration of malfunction. Goes into `ParamMalfunctionGen`. malfunction_interval: int Inverse of rate of malfunction occurrence. Goes into `ParamMalfunctionGen`. speed_ratios: Dict[float, float] Speed ratios of all agents. They are probabilities of all different speeds and have to add up to 1. Goes into `sparse_line_generator`. Defaults to `{1.0: 0.25, 0.5: 0.25, 0.33: 0.25, 0.25: 0.25}`. seed: int Initiate random seed generators. Goes into `reset`. obs_builder_object: Optional[ObservationBuilder] Defaults to `TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv(max_depth=50))` Returns ------- RailEnv The generated environment reset with the given seed. """ if speed_ratios is None: speed_ratios = {1.0: 0.25, 0.5: 0.25, 0.33: 0.25, 0.25: 0.25} if obs_builder_object is None: obs_builder_object = TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv(max_depth=50)) env = RailEnv( width=x_dim, height=y_dim, rail_generator=sparse_rail_generator( max_num_cities=n_cities, seed=seed, grid_mode=grid_mode, max_rails_between_cities=max_rails_between_cities, max_rail_pairs_in_city=max_rail_pairs_in_city ), malfunction_generator=ParamMalfunctionGen(MalfunctionParameters( min_duration=malfunction_duration_min, max_duration=malfunction_duration_max, malfunction_rate=1.0 / malfunction_interval)), line_generator=sparse_line_generator(speed_ratio_map=speed_ratios, seed=seed), number_of_agents=n_agents, obs_builder_object=obs_builder_object, record_steps=True, random_seed=seed ) env.reset(random_seed=seed) return env