Source code for flatland.envs.persistence

import pickle
from typing import Tuple, Dict

import msgpack
import msgpack_numpy
import numpy as np

msgpack_numpy.patch()

from flatland.envs import rail_env

from flatland.core.env_observation_builder import DummyObservationBuilder
from flatland.core.transition_map import GridTransitionMap
from flatland.envs.agent_utils import EnvAgent, load_env_agent

# cannot import objects / classes directly because of circular import
from flatland.envs import malfunction_generators as mal_gen
from flatland.envs import rail_generators as rail_gen
from flatland.envs import line_generators as line_gen


[docs] class RailEnvPersister(object):
[docs] @classmethod def save(cls, env, filename, save_distance_maps=False): """ Saves environment and distance map information in a file Parameters: --------- filename: string save_distance_maps: bool """ env_dict = cls.get_full_state(env) # We have an unresolved problem with msgpack loading the list of agents # see also 20 lines below. # print(f"env save - agents: {env_dict['agents'][0]}") # a0 = env_dict["agents"][0] # print("agent type:", type(a0)) if save_distance_maps is True: oDistMap = env.distance_map.get() if oDistMap is not None: if len(oDistMap) > 0: env_dict["distance_map"] = oDistMap else: print("[WARNING] Unable to save the distance map for this environment, as none was found !") else: print("[WARNING] Unable to save the distance map for this environment, as none was found !") with open(filename, "wb") as file_out: if filename.endswith("mpk"): data = msgpack.packb(env_dict) elif filename.endswith("pkl"): data = pickle.dumps(env_dict) # pickle.dump(env_dict, file_out) file_out.write(data)
# We have an unresovled problem with msgpack loading the list of Agents # with open(filename, "rb") as file_in: # if filename.endswith("mpk"): # bytes_in = file_in.read() # dIn = msgpack.unpackb(data, encoding="utf-8") # print(f"msgpack check - {dIn.keys()}") # print(f"msgpack check - {dIn['agents'][0]}")
[docs] @classmethod def save_episode(cls, env, filename): dict_env = cls.get_full_state(env) # Add additional info to dict_env before saving dict_env["episode"] = env.cur_episode dict_env["actions"] = env.list_actions dict_env["shape"] = (env.width, env.height) dict_env["max_episode_steps"] = env._max_episode_steps with open(filename, "wb") as file_out: if filename.endswith(".mpk"): file_out.write(msgpack.packb(dict_env)) elif filename.endswith(".pkl"): pickle.dump(dict_env, file_out)
[docs] @classmethod def load(cls, env, filename, load_from_package=None): """ Load environment with distance map from a file Parameters: ------- filename: string """ env_dict = cls.load_env_dict(filename, load_from_package=load_from_package) cls.set_full_state(env, env_dict)
[docs] @classmethod def load_new(cls, filename, load_from_package=None) -> Tuple["RailEnv", Dict]: env_dict = cls.load_env_dict(filename, load_from_package=load_from_package) llGrid = env_dict["grid"] height = len(llGrid) width = len(llGrid[0]) # TODO: inefficient - each one of these generators loads the complete env file. env = rail_env.RailEnv( # width=1, height=1, width=width, height=height, rail_generator=rail_gen.rail_from_file(filename, load_from_package=load_from_package), line_generator=line_gen.line_from_file(filename, load_from_package=load_from_package), # malfunction_generator_and_process_data=mal_gen.malfunction_from_file(filename, # load_from_package=load_from_package), malfunction_generator=mal_gen.FileMalfunctionGen(env_dict), obs_builder_object=DummyObservationBuilder(), record_steps=True) env.rail = GridTransitionMap(1, 1) # dummy # TODO bad code smell - agent_position initialized in reset() only. env.agent_positions = np.zeros((env.height, env.width), dtype=int) - 1 cls.set_full_state(env, env_dict) return env, env_dict
[docs] @classmethod def load_env_dict(cls, filename, load_from_package=None): if load_from_package is not None: from importlib_resources import read_binary load_data = read_binary(load_from_package, filename) else: with open(filename, "rb") as file_in: load_data = file_in.read() if filename.endswith("mpk"): env_dict = msgpack.unpackb(load_data, use_list=False, raw=False) elif filename.endswith("pkl"): try: env_dict = pickle.loads(load_data) except ValueError: print("pickle failed to load file:", filename, " trying msgpack (deprecated)...") env_dict = msgpack.unpackb(load_data, use_list=False, raw=False) else: print(f"filename {filename} must end with either pkl or mpk") env_dict = {} # Replace the agents tuple with EnvAgent objects if "agents_static" in env_dict: env_dict["agents"] = EnvAgent.load_legacy_static_agent(env_dict["agents_static"]) # remove the legacy key del env_dict["agents_static"] elif "agents" in env_dict: # env_dict["agents"] = [EnvAgent(*d[0:len(d)]) for d in env_dict["agents"]] env_dict["agents"] = [load_env_agent(d) for d in env_dict["agents"]] return env_dict
[docs] @classmethod def load_resource(cls, package, resource): """ Load environment (with distance map?) from a binary """ # from importlib_resources import read_binary # load_data = read_binary(package, resource) # if resource.endswith("pkl"): # env_dict = pickle.loads(load_data) # elif resource.endswith("mpk"): # env_dict = msgpack.unpackb(load_data, encoding="utf-8") # cls.set_full_state(env, env_dict) return cls.load_new(resource, load_from_package=package)
[docs] @classmethod def set_full_state(cls, env, env_dict): """ Sets environment state from env_dict Parameters ------- env_dict: dict """ grid = np.array(env_dict["grid"]) # Initialise the env with the frozen agents in the file env.agents = env_dict.get("agents", []) # For consistency, set number_of_agents, which is the number which will be generated on reset env.number_of_agents = env.get_num_agents() env.height, env.width = grid.shape # use new rail object instance for lru cache scoping and garbage collection to work properly env.rail = GridTransitionMap(height=env.height, width=env.width) env.rail.grid = grid env.dones = dict.fromkeys(list(range(env.get_num_agents())) + ["__all__"], False) # TODO merge with https://github.com/flatland-association/flatland-rl/pull/97/files max_episode_steps = env_dict.get('max_episode_steps', None) if max_episode_steps is not None: env._max_episode_steps = max_episode_steps env.distance_map.distance_map = env_dict.get('distance_map', None) env.distance_map.reset(env.agents, env.rail) env.distance_map._compute(env.agents, env.rail)
[docs] @classmethod def get_full_state(cls, env): """ Returns state of environment in dict object, ready for serialization """ grid_data = env.rail.grid.tolist() # msgpack cannot persist EnvAgent so use the Agent namedtuple. agent_data = [agent.to_agent() for agent in env.agents] # print("get_full_state - agent_data:", agent_data) malfunction_data: mal_gen.MalfunctionProcessData = env.malfunction_process_data msg_data_dict = { "grid": grid_data, "agents": agent_data, "malfunction": malfunction_data, "max_episode_steps": env._max_episode_steps, } return msg_data_dict
################################################################################################ # deprecated methods moved from RailEnv. Most likely broken.
[docs] def deprecated_get_full_state_msg(self) -> msgpack.Packer: """ Returns state of environment in msgpack object """ msg_data_dict = self.get_full_state_dict() return msgpack.packb(msg_data_dict, use_bin_type=True)
[docs] def deprecated_get_agent_state_msg(self) -> msgpack.Packer: """ Returns agents information in msgpack object """ agent_data = [agent.to_agent() for agent in self.agents] msg_data = { "agents": agent_data} return msgpack.packb(msg_data, use_bin_type=True)
[docs] def deprecated_get_full_state_dist_msg(self) -> msgpack.Packer: """ Returns environment information with distance map information as msgpack object """ grid_data = self.rail.grid.tolist() agent_data = [agent.to_agent() for agent in self.agents] # I think these calls do nothing - they create packed data and it is discarded # msgpack.packb(grid_data, use_bin_type=True) # msgpack.packb(agent_data, use_bin_type=True) distance_map_data = self.distance_map.get() malfunction_data: mal_gen.MalfunctionProcessData = self.malfunction_process_data # msgpack.packb(distance_map_data, use_bin_type=True) # does nothing msg_data = { "grid": grid_data, "agents": agent_data, "distance_map": distance_map_data, "malfunction": malfunction_data} return msgpack.packb(msg_data, use_bin_type=True)
[docs] def deprecated_set_full_state_msg(self, msg_data): """ Sets environment state with msgdata object passed as argument Parameters ------- msg_data: msgpack object """ data = msgpack.unpackb(msg_data, use_list=False, encoding='utf-8') self.rail.grid = np.array(data["grid"]) # agents are always reset as not moving if "agents_static" in data: self.agents = EnvAgent.load_legacy_static_agent(data["agents_static"]) else: self.agents = [EnvAgent(*d[0:12]) for d in data["agents"]] # setup with loaded data self.height, self.width = self.rail.grid.shape self.rail.height = self.height self.rail.width = self.width self.dones = dict.fromkeys(list(range(self.get_num_agents())) + ["__all__"], False)
[docs] def deprecated_set_full_state_dist_msg(self, msg_data): """ Sets environment grid state and distance map with msgdata object passed as argument Parameters ------- msg_data: msgpack object """ data = msgpack.unpackb(msg_data, use_list=False, encoding='utf-8') self.rail.grid = np.array(data["grid"]) # agents are always reset as not moving if "agents_static" in data: self.agents = EnvAgent.load_legacy_static_agent(data["agents_static"]) else: self.agents = [EnvAgent(*d[0:12]) for d in data["agents"]] if "distance_map" in data.keys(): self.distance_map.set(data["distance_map"]) # setup with loaded data self.height, self.width = self.rail.grid.shape self.rail.height = self.height self.rail.width = self.width self.dones = dict.fromkeys(list(range(self.get_num_agents())) + ["__all__"], False)