import pickle
from typing import Tuple, Dict
import msgpack
import msgpack_numpy
import numpy as np
msgpack_numpy.patch()
from flatland.envs import rail_env
from flatland.core.env_observation_builder import DummyObservationBuilder
from flatland.core.transition_map import GridTransitionMap
from flatland.envs.agent_utils import EnvAgent, load_env_agent
# cannot import objects / classes directly because of circular import
from flatland.envs import malfunction_generators as mal_gen
from flatland.envs import rail_generators as rail_gen
from flatland.envs import line_generators as line_gen
[docs]
class RailEnvPersister(object):
[docs]
@classmethod
def save(cls, env, filename, save_distance_maps=False):
"""
Saves environment and distance map information in a file
Parameters:
---------
filename: string
save_distance_maps: bool
"""
env_dict = cls.get_full_state(env)
# We have an unresolved problem with msgpack loading the list of agents
# see also 20 lines below.
# print(f"env save - agents: {env_dict['agents'][0]}")
# a0 = env_dict["agents"][0]
# print("agent type:", type(a0))
if save_distance_maps is True:
oDistMap = env.distance_map.get()
if oDistMap is not None:
if len(oDistMap) > 0:
env_dict["distance_map"] = oDistMap
else:
print("[WARNING] Unable to save the distance map for this environment, as none was found !")
else:
print("[WARNING] Unable to save the distance map for this environment, as none was found !")
with open(filename, "wb") as file_out:
if filename.endswith("mpk"):
data = msgpack.packb(env_dict)
elif filename.endswith("pkl"):
data = pickle.dumps(env_dict)
# pickle.dump(env_dict, file_out)
file_out.write(data)
# We have an unresovled problem with msgpack loading the list of Agents
# with open(filename, "rb") as file_in:
# if filename.endswith("mpk"):
# bytes_in = file_in.read()
# dIn = msgpack.unpackb(data, encoding="utf-8")
# print(f"msgpack check - {dIn.keys()}")
# print(f"msgpack check - {dIn['agents'][0]}")
[docs]
@classmethod
def save_episode(cls, env, filename):
dict_env = cls.get_full_state(env)
# Add additional info to dict_env before saving
dict_env["episode"] = env.cur_episode
dict_env["actions"] = env.list_actions
dict_env["shape"] = (env.width, env.height)
dict_env["max_episode_steps"] = env._max_episode_steps
with open(filename, "wb") as file_out:
if filename.endswith(".mpk"):
file_out.write(msgpack.packb(dict_env))
elif filename.endswith(".pkl"):
pickle.dump(dict_env, file_out)
[docs]
@classmethod
def load(cls, env, filename, load_from_package=None):
"""
Load environment with distance map from a file
Parameters:
-------
filename: string
"""
env_dict = cls.load_env_dict(filename, load_from_package=load_from_package)
cls.set_full_state(env, env_dict)
[docs]
@classmethod
def load_new(cls, filename, load_from_package=None) -> Tuple["RailEnv", Dict]:
env_dict = cls.load_env_dict(filename, load_from_package=load_from_package)
llGrid = env_dict["grid"]
height = len(llGrid)
width = len(llGrid[0])
# TODO: inefficient - each one of these generators loads the complete env file.
env = rail_env.RailEnv( # width=1, height=1,
width=width, height=height,
rail_generator=rail_gen.rail_from_file(filename,
load_from_package=load_from_package),
line_generator=line_gen.line_from_file(filename,
load_from_package=load_from_package),
# malfunction_generator_and_process_data=mal_gen.malfunction_from_file(filename,
# load_from_package=load_from_package),
malfunction_generator=mal_gen.FileMalfunctionGen(env_dict),
obs_builder_object=DummyObservationBuilder(),
record_steps=True)
env.rail = GridTransitionMap(1, 1) # dummy
# TODO bad code smell - agent_position initialized in reset() only.
env.agent_positions = np.zeros((env.height, env.width), dtype=int) - 1
cls.set_full_state(env, env_dict)
return env, env_dict
[docs]
@classmethod
def load_env_dict(cls, filename, load_from_package=None):
if load_from_package is not None:
from importlib_resources import read_binary
load_data = read_binary(load_from_package, filename)
else:
with open(filename, "rb") as file_in:
load_data = file_in.read()
if filename.endswith("mpk"):
env_dict = msgpack.unpackb(load_data, use_list=False, raw=False)
elif filename.endswith("pkl"):
try:
env_dict = pickle.loads(load_data)
except ValueError:
print("pickle failed to load file:", filename, " trying msgpack (deprecated)...")
env_dict = msgpack.unpackb(load_data, use_list=False, raw=False)
else:
print(f"filename {filename} must end with either pkl or mpk")
env_dict = {}
# Replace the agents tuple with EnvAgent objects
if "agents_static" in env_dict:
env_dict["agents"] = EnvAgent.load_legacy_static_agent(env_dict["agents_static"])
# remove the legacy key
del env_dict["agents_static"]
elif "agents" in env_dict:
# env_dict["agents"] = [EnvAgent(*d[0:len(d)]) for d in env_dict["agents"]]
env_dict["agents"] = [load_env_agent(d) for d in env_dict["agents"]]
return env_dict
[docs]
@classmethod
def load_resource(cls, package, resource):
"""
Load environment (with distance map?) from a binary
"""
# from importlib_resources import read_binary
# load_data = read_binary(package, resource)
# if resource.endswith("pkl"):
# env_dict = pickle.loads(load_data)
# elif resource.endswith("mpk"):
# env_dict = msgpack.unpackb(load_data, encoding="utf-8")
# cls.set_full_state(env, env_dict)
return cls.load_new(resource, load_from_package=package)
[docs]
@classmethod
def set_full_state(cls, env, env_dict):
"""
Sets environment state from env_dict
Parameters
-------
env_dict: dict
"""
grid = np.array(env_dict["grid"])
# Initialise the env with the frozen agents in the file
env.agents = env_dict.get("agents", [])
# For consistency, set number_of_agents, which is the number which will be generated on reset
env.number_of_agents = env.get_num_agents()
env.height, env.width = grid.shape
# use new rail object instance for lru cache scoping and garbage collection to work properly
env.rail = GridTransitionMap(height=env.height, width=env.width)
env.rail.grid = grid
env.dones = dict.fromkeys(list(range(env.get_num_agents())) + ["__all__"], False)
# TODO merge with https://github.com/flatland-association/flatland-rl/pull/97/files
max_episode_steps = env_dict.get('max_episode_steps', None)
if max_episode_steps is not None:
env._max_episode_steps = max_episode_steps
env.distance_map.distance_map = env_dict.get('distance_map', None)
env.distance_map.reset(env.agents, env.rail)
env.distance_map._compute(env.agents, env.rail)
[docs]
@classmethod
def get_full_state(cls, env):
"""
Returns state of environment in dict object, ready for serialization
"""
grid_data = env.rail.grid.tolist()
# msgpack cannot persist EnvAgent so use the Agent namedtuple.
agent_data = [agent.to_agent() for agent in env.agents]
# print("get_full_state - agent_data:", agent_data)
malfunction_data: mal_gen.MalfunctionProcessData = env.malfunction_process_data
msg_data_dict = {
"grid": grid_data,
"agents": agent_data,
"malfunction": malfunction_data,
"max_episode_steps": env._max_episode_steps,
}
return msg_data_dict
################################################################################################
# deprecated methods moved from RailEnv. Most likely broken.
[docs]
def deprecated_get_full_state_msg(self) -> msgpack.Packer:
"""
Returns state of environment in msgpack object
"""
msg_data_dict = self.get_full_state_dict()
return msgpack.packb(msg_data_dict, use_bin_type=True)
[docs]
def deprecated_get_agent_state_msg(self) -> msgpack.Packer:
"""
Returns agents information in msgpack object
"""
agent_data = [agent.to_agent() for agent in self.agents]
msg_data = {
"agents": agent_data}
return msgpack.packb(msg_data, use_bin_type=True)
[docs]
def deprecated_get_full_state_dist_msg(self) -> msgpack.Packer:
"""
Returns environment information with distance map information as msgpack object
"""
grid_data = self.rail.grid.tolist()
agent_data = [agent.to_agent() for agent in self.agents]
# I think these calls do nothing - they create packed data and it is discarded
# msgpack.packb(grid_data, use_bin_type=True)
# msgpack.packb(agent_data, use_bin_type=True)
distance_map_data = self.distance_map.get()
malfunction_data: mal_gen.MalfunctionProcessData = self.malfunction_process_data
# msgpack.packb(distance_map_data, use_bin_type=True) # does nothing
msg_data = {
"grid": grid_data,
"agents": agent_data,
"distance_map": distance_map_data,
"malfunction": malfunction_data}
return msgpack.packb(msg_data, use_bin_type=True)
[docs]
def deprecated_set_full_state_msg(self, msg_data):
"""
Sets environment state with msgdata object passed as argument
Parameters
-------
msg_data: msgpack object
"""
data = msgpack.unpackb(msg_data, use_list=False, encoding='utf-8')
self.rail.grid = np.array(data["grid"])
# agents are always reset as not moving
if "agents_static" in data:
self.agents = EnvAgent.load_legacy_static_agent(data["agents_static"])
else:
self.agents = [EnvAgent(*d[0:12]) for d in data["agents"]]
# setup with loaded data
self.height, self.width = self.rail.grid.shape
self.rail.height = self.height
self.rail.width = self.width
self.dones = dict.fromkeys(list(range(self.get_num_agents())) + ["__all__"], False)
[docs]
def deprecated_set_full_state_dist_msg(self, msg_data):
"""
Sets environment grid state and distance map with msgdata object passed as argument
Parameters
-------
msg_data: msgpack object
"""
data = msgpack.unpackb(msg_data, use_list=False, encoding='utf-8')
self.rail.grid = np.array(data["grid"])
# agents are always reset as not moving
if "agents_static" in data:
self.agents = EnvAgent.load_legacy_static_agent(data["agents_static"])
else:
self.agents = [EnvAgent(*d[0:12]) for d in data["agents"]]
if "distance_map" in data.keys():
self.distance_map.set(data["distance_map"])
# setup with loaded data
self.height, self.width = self.rail.grid.shape
self.rail.height = self.height
self.rail.width = self.width
self.dones = dict.fromkeys(list(range(self.get_num_agents())) + ["__all__"], False)